Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Grain growth in polycrystals is traditionally considered a capillarity-driven process, where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean curvature flow) with a velocity proportional to the local curvature (including extensions to account for anisotropic GB energy and mobility). Experimental and simulation evidence shows that this simplistic view is untrue. We demonstrate that the failure of the classical mean curvature flow description of grain growth mainly originates from the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our findings are built on large-scale microstructure evolution simulations incorporating the fundamental (crystallography-respecting) microscopic mechanism of GB migration. The nature of the deviations from curvature flow revealed in our simulations is consistent with observations in recent experimental studies on different materials. This work also demonstrates how to incorporate the mechanical effects that are essential to the accurate prediction of microstructure evolution.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation–aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.more » « less
-
Understanding the relationship among elemental compositions, nanolamellar microstructures, and mechanical properties enables the rational design of high-entropy alloys (HEAs). Here, we construct nanolamellar AlxCoCuFeNi HEAs with alternating high– and low–Al concentration layers and explore their mechanical properties using a combination of molecular dynamic simulation and density functional theory calculation. Our results show that the HEAs with nanolamellar structures exhibit ideal plastic behavior during uniaxial tensile loading, a feature not observed in homogeneous HEAs. This remarkable ideal plasticity is attributed to the unique deformation mechanisms of phase transformation coupled with dislocation nucleation and propagation in the high–Al concentration layers and the confinement and slip-blocking effect of the low–Al concentration layers. Unexpectedly, this ideal plasticity is fully reversible upon unloading, leading to a remarkable shape memory effect. Our work highlights the importance of nanolamellar structures in controlling the mechanical and functional properties of HEAs and presents a fascinating route for the design of HEAs for both functional and structural applications.more » « less
-
Abstract Simultaneously enhancing strength and ductility of metals and alloys has been a tremendous challenge. Here, we investigate a CoCuFeNiPd high-entropy alloy (HEA), using a combination of Monte Carlo method, molecular dynamic simulation, and density-functional theory calculation. Our results show that this HEA is energetically favorable to undergo short-range ordering (SRO), and the SRO leads to a pseudo-composite microstructure, which surprisingly enhances both the ultimate strength and ductility. The SRO-induced composite microstructure consists of three categories of clusters: face-center-cubic-preferred (FCCP) clusters, indifferent clusters, and body-center-cubic-preferred (BCCP) clusters, with the indifferent clusters playing the role of the matrix, the FCCP clusters serving as hard fillers to enhance the strength, while the BCCP clusters acting as soft fillers to increase the ductility. Our work highlights the importance of SRO in influencing the mechanical properties of HEAs and presents a fascinating route for designing HEAs to achieve superior mechanical properties.more » « less
An official website of the United States government
